第三百六十二章数学危机?(4/4)
第三次数学危机,则是出现在19世纪末,当时不列颠数学家罗素把集合分成两种。但是推敲的时候,形成了罗素悖论由一切不是自身元素的集合所组成,那属于吗?
用通俗一点的话来说,小明有一天说“我永远撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,轻松摧毁集合理论!
为了解决这场数学危机,数学家们积极寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统。即所谓zf公理系统,直到此时,这场数学危机到此才缓和下来。
而如果标准猜想被证否,将会引起第四次数学危机,很多以前被认为是对的理论,都将被面临着推倒重建。
当然,从历史的发展来看,出现数学危机并非一定坏事。因为在解决危机的过程中,本身会诞生一系列伟大的数学成果,而这本身就是数学发展的动力所在。
。.