第两百六十二章证明波利尼亚克猜想(1/4)
回到普林斯顿大学,刘一辰整个人开始逐步调整自己的状态。
图书馆中,刘一辰手中转着笔,大脑转得飞快。
正所谓劳逸结合,暑假三个多月时间,好好玩了一个月,其他世界也都没有考虑课题研究,此时将注意力调整到数学上,灵感不断迸现。
“也许群论可以很好地解决我目前遇到的问题!”刘一辰暗道。
群论是个很强大的工具,不但和泛函分析中的希尔伯特空间并列为量子力学的两大理论神器,在数论中、尤其是针对无限的素数问题进行研究时,更是往往能发挥奇效。
比如,任何基础数论的老师,在第一或者第二堂课上都会提到的一个很经典的范例——费马小定理。
这条定理有很多中证明方法,其中公认最简洁证明方法,便是用群论证明的。
至于有多简洁,标准字体甚至只需要三行就能做到。
即,若α和p互素,由ulr定理有α^φ(p)≡1(dp),但φ(p)=p-1,故α^(p-1)≡1(dp),两边乘以α即可得结论:当α是自然数,p是素数时,有α^p≡α(dp)。
是不是很简单?
事实上,费马小定理只是欧拉定理中的一个特例。
不过用欧拉定理,依旧可以用群论的方法解决,而且全部证明过程用不了半页纸。
之前证明了孪生素数猜想,刘一辰在思考着波利尼亚克猜想证明的时候,一直在考虑着如何将k=1形式推广到无穷大的自然数上,他首先想到了对筛法的拓扑学原理进行补充,不过却遇到了障碍。
现在一个暑假三个多月的放松,刘一辰再次考虑的时候,脑海里想到了群论。
来了灵感,刘一辰开始在草稿纸上写下一行行算式。
一连几天,刘一辰终于完成了波利尼亚克猜想的证明,看着自己写的十几页草稿纸,刘一辰露出了淡淡的微笑。
他这段时间在ariv网站上看到很多论文,都是想要在他证明孪生素数的猜想上,进一步来证明波利尼亚克猜想,但是毫无疑问,那些都存在着致命的思维错误,有些可能是作者没有发现,有些则是作者想要取巧躲避过去。
可是这对于研究数论已经达到大佬水平的刘一辰而言,却都逃不过他的双眼。
“接下来就是整理论文!”刘一辰大门不出二门不迈,就在宿舍里面整理论文,三餐都是冯琳给他带来的。
完成了波利尼亚克猜想的证明,整理论文起来就容易多了
本章未完,点击下一页继续阅读。