第152章 我有不同意见(2/3)
"黄国栋清了清嗓子,声音洪亮,
"我们小组经过深入讨论,已经得出了这道题的解答。首先,我们注意到题目中的关键函数......
"
黄国栋滔滔不绝地讲解着,时而在空中比划,时而在纸上快速写下公式。他的语速很快,眼神中闪烁着自信的光芒,仿佛在向所有人宣告:看,这就是我的实力!
老师们静静地听着,脸上没有太多表情。有的在认真记录,有的则若有所思地点着头。
"证明对于任意复数z满足|z|≤1,下列不等式成立:
|e^z+e^(-z)|≤2sh(|z|)
其中,e是自然对数的底,sh是双曲余弦函数。
我们的解法如下:首先,利用欧拉公式e^(ix)=s(x)+is(x),我们可以将z表示为x+iy的形式。然后:
e^z+e^(-z)=e^(x+iy)+e^(-x-iy)
=e^x(s(y)+is(y))+e^(-x)(s(-y)+is(-y))
=(e^x+e^(-x))s(y)+i(e^x-e^(-x))s(y)
利用双曲函数的定义,我们可以将其简化为:
e^z+e^(-z)=2sh(x)s(y)+2ish(x)s(y)
取模得到:
|e^z+e^(-z)|=2√(sh^2(x)s^2(y)+sh^2(x)s^2(y))
应用柯西-施瓦茨不等式,我们可以得到:
|e^z+e^(-z)|≤2√(sh^2(x)+sh^2(x))=2sh(|x|)
由于|z|≤1,我们有|x|≤|z|。而sh是单调递增函数,所以:
2sh(|x|)≤2sh(|z|)。
"
"......最后,我们得出的结论是,
"黄国栋用充满戏剧性的语气说道,
"因此,我们证明了不等式|e^z+e^(-z)|≤2sh(|z|)成立。
"
说完,黄国栋环视四周,脸上带着胜券在握的笑容。他期待着看到老师们赞赏的目光,甚至已经在心里想象着被选中的场景。
然而,出乎他意料的是,老师们并没有立即给出评价。乐组长只是点了点头,然后问道:
"还有谁要补充的吗?
"
这个问题让黄
本章未完,点击下一页继续阅读。