第三百五十五章 邱会安:绝对不是黎曼猜想!(3/7)
黎曼猜想中,复平面上r()=1/2的直线称rtl-l(临界线)。
运用这一术语,黎曼猜想的表述为—黎曼ζ函数的所有非平凡零点都位rtl-l上。
即黎曼ζ函数的所有非平凡零点都位于复平面上r()=1/2的直线上(r()表示复数的实数部分)。
虽然能确定两个复平面就某种相关性,但就像丁志强所遇到的问题,他并没有对于最小对节点函数(高次质点函数代入5和17所得到的二元函数方程)进行解析。
没有推导、没有其他分析,想要做出任何的验证都不可能。
如果只是利用思考来做推断,显然不可能得出任何结果。
王浩就干脆让邱会安也加入进来,师徒三人认真的解析起最小对节点函数,同时,他也建立了一个任务一
【任务四。】
【研究项目名称寻找最小对节点函数的交线复平面与黎曼猜想之间的相关性(难度)。】
【灵感值0。】「级难度」「还好。」
当看到研究项目名称的难度时,王浩微微皱起了眉头,他总感觉新找到的研究方向非常重大,还以为会是'+'级别的难度。
级
「或许不一定是难度决定成果,而且找到了某种关键?」王浩仔细思考着。
这是感觉。
虽然过去所做出的重大数学研究,主要依靠的都是系统的反馈和灵感提升,但解决如此多重大数学问题以后,王浩对于数论、函数论等主要方向的理解,也绝对达到了最顶尖程度。
依靠对于数学的理解,他对于自己的感觉也是很有信心的。
在一项全新的研究中,某些时候,感觉是非常重要的。像是丁志强
王浩扫了一眼正投入到思考中的丁志强,不由满意的点了点头,他马上沉下心思,继续投入到对最小对节点函数的解析中。
丁志强之所
以没有对于最小对接点函数进行解析,主要还是因为难度。
这个函数实在太复杂了。
作为一个类似于偏微分方程的函数,想要进行解析、转换,其难度是可想而知的,绝大部分类似函数都是不可能解析的。
如果是通过拆分进行代数几何分析,再联系在一起也非常的困难,他们一起研究了两天,都没有任何的进展。
整个过程中,带来的灵感值也聊聊无几,也只有可怜的1」点。
王浩觉得应该找个代数几何专家,他马上想到了卡切尔
本章未完,点击下一页继续阅读。