第一百五十八章 你们的研究是错误,但你们的研究太重要了!?(2/7)
他首先找到了一大堆的相关资料和论文。
然后,开始研究。
这些论文都是和哥德巴赫猜想有关的论文,其中也包括陈景润先生对于‘1+’的证明论文,论文的名称是《表大偶数为一个素数及一个不超过二个素数的乘积之和》。
1+,指的当然不是1+=3。
哥德巴赫猜想出现在174年。
当时哥德巴赫给欧拉的信中提出了以下猜想,任一大于的整数都可写成三个质数之和。
哥德巴赫自己无法证明它,就写信请教赫赫有名的大数学家欧拉帮忙证明。
然而一直到死,欧拉也无法证明。
不过欧拉还是进行了很多研究的,他在给哥德巴赫猜想中的回信中提出了另一个等价的版本,也就是现在流传最广的版本,即‘任一大于的偶数都可写成两个质数之和’。
正因为如此,才会有‘1+1’的说法。
1+1,说的是两个质数之和。
陈景润证明的‘1+’,则是‘任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和’。
他所利用的方法就是最经典的‘筛法’。
历史上,所有哥德巴赫猜想相关证明进展,利用的都是筛法,筛法,也就是筛选法,理解起来很容易。
首先把自然数按次序排列起来,从数字1开始,1不是质数,也不是合数,要划去。
第二个数是质数留下来,而把后面所有能被整除的数都划去。
后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。
3后面第一个没划去的数是,把留下,再把后面所有能被整除的数都划去……
这样一直做下去,就会把不超过n的全部合数都筛掉,留下的就是不超过n的全部质数。
这个方法听起来很简单,实际上,因为筛选过程是无穷尽的,就必须要用到数学分析方法,涉及到的是组合数学问题。
组合数学,一定程度上就可以为离散数学。
广义上来说组合数字的分析就是离散数学,但实际应用来说,狭义的组合数学是离散数学除去图论、代数结构数理逻辑后剩下的部份。
离散数学就是王浩的‘拿手好戏’。
所以对于陈景润的研究论文,王浩很容易就读懂了了解了其中的方法逻辑。
同时也做了一个判断--就像是数学界普遍的看法,陈景润先生已经把筛法运用到了极致,也只完成
本章未完,点击下一页继续阅读。