第二百零二章:两条不同的路(4/5)
下降的光滑函数序列{uj}?&nbp;p使得&nbp;h(uj&nbp;)→μ,并且记为&nbp;h(u)=μ”
“”
“如果从这方面入手的话,或许有希望能深入到等谱非等距同构猜想中。”
“不知道你怎么看?”
将自己的思路说出来后,费弗曼期待的看向徐川。
徐川没有立即回答,手指在办公桌规律的敲击着,他从费弗曼的话语中,看到了另一条通向等谱问题的道路。
一类二阶完全非线性偏微分方程的格林函数,这是一条他此前没有想过的道路。
但这条道路从费弗曼的口中说出来,他敏锐的察觉到似乎同样可行。
沉思了一会,徐川停下敲击红木办公桌的手指开口道“从非线性偏微方程方向出发,利用狄利克雷函数来研究等谱问题,这一方向是我没有想过的。”
“不过单从直觉来看,这或许是条可行的道路,完全值得一试。”
闻言,费弗曼嘴角扬起了一丝笑容“那让我们出发吧。”
徐川笑了笑,道“不急,关于等谱非等距同构猜想问题,我这边也有一些想法,你要不要听听?”
费弗曼眼神中划过一丝惊讶,不过很快就被好奇覆盖了,他迅速回道“当然。”
徐川起身,走到办公室的边缘,将之前使用过的黑板从角落中拖了出来,拾起一支粉笔,整理了一下思路后在上面写道
“(p){-△u=λu,x∈Ω;u=0,x∈Γ1;δu/δn=0,x∈Γ2”
“这里Γ是Ω的边界,并且Γ=Γ1uΓ2,Ω是rn中有界非空开集,或一般的具有限勒贝格测度的n维区域,△是pe算子,t1和t2都非空我们定义”
“谱谱6(p)是离散的,按其特征值的有限重数可排列成0≤λ1≤λ2≤…≤λ≤…并且当→00时,入→0,定义n(,-λ,λ)=#{∈n]ょ
“”
办公室中,徐川手持粉笔在黑板上书写着自己的思路与想法,费弗曼教授则站在身后观看着。
到了他们这个层次的数学家,并不需要报告者过多的详细介绍自己的想法,从书写出来的公式中,完全就可以看出来。
而随着徐川的书写,费弗曼的眼神也逐渐明亮了起来,从一开始的好奇,到惊讶,再到惊愕了然。
正如徐川从他的述说中看到了一条通向等谱非等距同构猜想问题的道路一样,他也从徐川书写中看到了一条完全不同的道
本章未完,点击下一页继续阅读。