第一百零八章:上台报告(2/3)
,参与数学会的人也很多。
不过这么多人,不可能都对某一个区域的数学问题感兴趣,大家都分散了自己在寻找自己的机缘。
其实能有两百多人能过来听自己的报告会,徐川都有些惊讶。
ey-berry猜想的难度虽然挺高的,但在当今的数学界并非主流研究对象,甚至可以说很偏。
相比较之下,隔壁教授的数论就是典型的热门了。
能有这么多人来听报告,大概和他的年龄有关系。
参会手册上有每一个作报告学者的详细信息,从报告内容再到作报告人员的年龄,这些都有详细的叙述。
一名十七岁的少年,解决掉了一个世界级的数学猜想,这还是很让人好奇的。
没有怯场,整理了一下衣服后徐川走上了舞台。
这一刻,台上两百多人同时将目光投递了过来,在主持会务的工作人员将投影幕布打开后,他之前传递给普林斯顿的报告材料呈现在了投影幕布上。
微微调整了一下耳麦,使其处于一个合适的位置后,徐川深吸了一口后看向了身侧的幕布,缓缓的开口道
“首先感谢普林斯顿大学给我的这个机会,也感谢诸位从世界各地不远万里赶来,听我站在这里报告有关于ey-berry猜想弱化形式的证明报告。”
“关于ey-berry猜想弱化形式的证明报告,想来大家都已经看过了,对于论文中繁琐的证明步骤,我将不再赘述。”
“而接下来的时间,我将按照惯例分成两份,前十分钟是我对证明思路的关键讲解,后二十分钟将是留给大家的提问时间。”
“那么,现在开始吧。”
顿了顿,徐川看向身侧的投影幕布“1993年,&nbp;pidu-perane两位教授证明了一维的&nbp;ey-berry猜想是成立的,但对高维的&nbp;ey-berry猜想,情形变得非常复杂”
是否存在某一个分形框架,使得边界?Ω在此分形框架下是可测的,同时&nbp;ey-berry猜想在此分形框架下是成立的?”
“既n(λ)=(2π)?nn|Ω|nλn/2?&nbp;,δμ(δ,?Ω)λδ/2&nbp;+(λδ/2),λ→+∞,”
这是目前数学界中有关&nbp;ey-berry猜想的最新定义。”
“设Ω?&nbp;rn为有界开集,我们考虑如下的&nbp;dirihet-pe算子的特征值问
本章未完,点击下一页继续阅读。