第169章 要研究哥德巴赫猜想(3/18)
解释说明。
无论马智明还是现场其他评委,对徐源的数学天赋都非常清楚。
单一个本科毕业论文,都能研究最优传输理论。
如今申请杰青,其项目课题又会是什么,自然让他们表示期待。
因此在演讲正式开始后,在场所有人的目光全部集中在徐源身上,可以说显得非常认真。
如果让外面其他博士看到这一幕,恐怕还以为是徐源在给一众大佬讲课。
而就当徐源的演示文稿出现在屏幕上,众人看到首页的标题后顿时瞪大眼睛,其中马智明院士更是忍不住惊呼出声来。
“哥德巴赫猜想的证明!”
是的。
徐源决定研究的课题,正是同样为数论终极问题的哥德巴赫猜想。
作为已经存在两百多年的难题,最初由哥德巴赫提出并写信请教当时赫赫有名的大数学家欧拉请教,希望欧拉能帮忙证明。
但遗憾的是直到欧拉去世,也未能证明。
从而成为了数学界悬而未决的难题。
上次有所进展还是半个世纪前,陈景润通过筛法证明了1+2成立。
即任一充分大的偶数,都可以表示成二个素数的和,或是一个素数和一个半素数的和。
所谓哥德巴赫猜想,用殆素数途径研究的话,设N为偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和。
表示为N=A+B
于是便有了每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。
如此哥德巴赫猜想就可以写成1+1。
但遗憾的是在半世纪前,陈景润通过使用筛法只把哥德巴赫猜想证明到1+2。
并未彻底解决哥德巴赫猜想。
不过哪怕是证明到1+2,依旧让陈景润的名字在数学家口中广泛流传。
徐源选择研究哥德巴赫猜想,也正是想彻底完成证明弥补陈景润先生的遗憾。
毕竟当初他发表首篇论文,证明无穷多个卡迈克尔数之间间隔问题时,正是在陈景润筛法上进行改进。
孪生素数猜想和哥德巴赫猜想,都被称作数论领域的终极问题。
机缘巧合下他虽然让孪生素数有了进展,证明到小于246素数对,可毕竟未能摘取桂冠完成最终证明。
这对他来说同样是一种遗憾。
既然对孪生素数的后续证明暂时没有头绪,那不如另辟蹊径选择哥德巴赫猜想。
本章未完,点击下一页继续阅读。