第44章 GPU的妙用(1/2)
深夜的宿舍内,只有三人起伏的鼾声。
齐凡逛遍外网各大技术论坛,还有各类论文数据库,以及各种大小期刊数据库。
他发现一个可悲的现实--没人想过要用gpu来跑深度学习模型。
所谓的深度学习,就是n层神经网络的叠加。就好比是千层糕,每一层神经网络就相当于千层糕中的一层。于是一层又一层的神经网络叠加,这块千层糕就越来高。相对来说,就是神经网络的深度越来越深。
因此,采用多层神经网络的模型才会被称为深度学习模型。
而神经网络层数越多,模型的深度越深,势必就会带来运算量的增加。
虽然深度学习的概念早就被提出了,可是碍于cpu运算能力的限制,也就是碍于硬件能力的限制,一直没得到长足发展。
齐凡好奇。既然cpu的运算量能力不足,那干嘛不上超算,搞它个一堆cpu。众人拾柴火焰高,几百个cpu一块运算,就不信这还不够。
正在他好奇之间,脑海中的系统面板有了变化。
【任务--开启并行计算。奖励:经验、积分、一次中级转盘奖励。】
齐凡嘴角邪魅一笑。他如今对这系统的尿性已经有十足了解。每当自己接触新东西时,就会触发这系统的提示。
既然眼下系统提示了,那说明自己的路子就是正确的。
并行计算?多核cpu还是用gpu?
齐凡查了下多核cpu的现状。除了那些被当成国之重器的超级计算机,一般的服务器撑死了十几个cpu就不得了了。
这系统不可能指引自己去碰超级计算机的,因为那玩意儿根本就不是如今的自己能触碰的。况且这任务的奖励是一次中级转盘,从奖励来看也不是难于上青天的任务。
那也就只有两种可能。用多核心服务器或者是用gpu。
齐凡先查了下cpu和gpu的运算原理。cpu和gpu相比,前者更像是串行计算,就是一条条数据排着队一次被cpu处理。而gpu则不同,它可以让格式雷同的数据,排排站手牵手并排地被它处理。
多核心的cpu本身并未改变cpu的计算方式,只是相当于多找了些帮手。一个核心的cpu就是一個帮手,多核心cpu相当于一群人一起干活,但是每个人干活的方式却并未改变。
那答案就呼之欲出了,肯定是用gpu来支持并行计算。
而眼下遗憾的是,齐凡并未在网上找到任何相关的资料
本章未完,点击下一页继续阅读。