第288章 嗯?哥猜!(3/6)
小苏同学的心情不错。看吧,就很突然的,她又为世界数学界做了些微不足道的贡献,这么想想华夏数学学会给她颁发的那个荣誉院士称号,也不算太过分。而且充分说明了,陈艺文背地里给她取了个“妲己”的外号是站不住脚的。等把用于开组会的桌子收拾干净,餐盒都扔到外面之后,回到办公室里,看到乔泽已经开始奋笔疾书,思路似乎很顺畅的样子,苏沐橙不由诧异的问了句:“乔哥,你已经找到思路了?”“嗯,先定义一个超螺旋函数(s),它将每个自然数n映射到一个复数平面上的点,形成一种螺旋状的分布。这个函数的特点是能够将质数映射到特定的螺旋线上,而合数则映射到另外的螺旋线上。然后再设定一个多项式p(x),它的系数和次数都由超螺旋函数的输出决定,用于预测或生成质数序列。这样,p(x)=a0+a1s(x)1+a2s(x)2++aks(x)k引入一个转换公式g(e),代表将任意偶数e分解为两个质数之和的表达式。即为:g(e)=p(x)+p(y)=e。只需要我能保证三者之间成立,就能证明哥德巴赫猜想。不过现在第一步有些困难,也就是保证当n是质数时,s(n)能落在特定的螺旋线上,而合数则分布在不同的路径上。这需要我能保证精确调整函数中的参数……”乔泽随口解释着。虽然乔泽说的很详细,但对于苏沐橙来说,照例是听不懂的。但这并不妨碍小苏同学日常捧哏:“哇,乔哥,一听就很有道理。而且还是用了乔代数解决问题,你肯定行的。不过,这个第一步连你都觉得很难吗?”乔泽头也不抬的答道:“还是别用乔代数了,听着很怪。至于难度……目前看来有两种方法可以实现。第一种是调整半径的计算方法,使得质数和合数在螺旋上的半径有所不同。另一种方法是使用一个与质数判定函数相关的加权因子w(n),这个因子对于质数有特定的值,对于合数有另外的值。不过两种方法各有优缺点。前者会让计算过程会很繁杂,尤其是随着数的增大,超过一定位数后,直接调整半径可能会导致螺旋图案的不均匀膨胀,影响视觉效果和数据的解读。后者更为灵活,具备可调节性。但增加了函数的复杂性,需要仔细选择w(n)的定义,以确保螺旋图案的清晰度和信息的有效传递,而且证明过程会更抽象。”听了这个回答,苏沐橙突然觉得这个问题对于乔泽来说,大概也没那么难了。毕竟方法是有的
本章未完,点击下一页继续阅读。